Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.353
Filtrar
1.
Mar Pollut Bull ; 202: 116274, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38564819

RESUMEN

In the context of limiting global warming, the seagrass Posidonia oceanica (L.) gained the centrality of several international climate change mitigation projects being the most effective carbon storage sink among Mediterranean seagrasses. To assess and monitor the change of environmental conditions and economic values of natural resources, the present study moves from the insights of the System of Environmental-Economic Accounting - Ecosystem Accounting to assess the economic value of the carbon sequestration and storage capacity of the Mediterranean-endemic seagrass P. oceanica at the Tremiti Islands Marine Protected Area. The economic value is compared across: i. the reference study by Pergent-Martini et al.; ii. the ecological condition-based approach; and iii. the unit value transfer. Based on the obtained outcomes, an ecosystem-based approach would prevent biases in the accounting of the ecosystem-service provision capacity of P. oceanica and help the policy maker to implement adequate public investment policies to mitigate its overall degradation.

2.
Sci Total Environ ; : 172186, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38599393

RESUMEN

Nature-based solutions (NbS) offer a promising and sustainable approach to addressing multiple environmental challenges, including climate change, pollution, and biodiversity loss. Despite the potential of NbS, their actual effectiveness in solving these challenges remains uncertain. Therefore, this study evaluates the contribution of NbS implemented in a nature-inclusive scenario for six environmental challenges and associated policy targets in the Netherlands. Fifteen different NbS were applied in the scenario in urban, agricultural, aquatic, and protected nature areas, with measures like flower field margins, green roofs, groundwater level management, and river restoration. The spatially-explicit Natural Capital Model was used to quantify the effectiveness of all applied NbS at a national-scale. Results show NbS significantly contribute to simultaneously solving all six assessed environmental challenges. The most significant impact was seen in improving the quality of water bodies (+34 %), making agriculture more sustainable (+24 %), and protecting and restoring biodiversity (+22 %). The contribution of NbS to address the quality of the living environment (+13 %), climate change (+10 %), and the energy transition was less effective (+2 %). Furthermore, NbS can help to achieve sectoral policy targets at the global, EU, and national levels, including those related to the Birds Habitats Directives, carbon emission, and pesticide reduction targets. This study highlights the potential of NbS to effectively address multiple environmental challenges, although they do not provide a complete solution, and suggests that future research could focus on identifying even more effective ways to implement NbS, and to mainstream their use in policy and practice.

3.
Ambio ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600246

RESUMEN

Scenario and policy assessments in socioeconomic and environmental studies face significant challenges in socio-ecological systems (SES). There are a limited number of studies that have looked at the impact of different scenarios within integrated approaches, and many have used a static approach with a single driver of change. The present work analyzes the SES dynamics for a strategic basin in the Colombian Andes when implementing and analyzing scenarios and policies related to land cover and land use change using a system dynamics simulation model. The model includes natural, ecosystem services, sociocultural, and economic components. Scenarios and policy options are analyzed both individually and jointly to identify synergies or trade-off effects between the different SES components. The results showed the different trajectories of the socio-ecological system according to the cases studied, and its impact on different variables in the analyzed components. Some counterintuitive effects were also identified, such as the importance of intrinsic motivations in decision-making processes, and determinants in land management and policy design.

4.
Environ Manage ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602520

RESUMEN

One of the paramount challenges in natural resource management revolves around the delicate equilibrium between the demand for and the supply of diverse Ecosystem Services (ESs) within a cultural landscape. Recognizing the centrality of cultural landscapes to human well-being, the sustainability of these landscapes hinges upon the health and stability of ecosystems that can effectively provide the required ESs. Over the long term, the sustainable supply of ESs is constrained by the potential supply of ESs. Understanding the potential supply of ESs is crucial for averting compromises to the ecosystems within a landscape. This article introduces a novel perspective on evaluating the ESs of a landscape by means of efficiency analysis. Instead of presenting the potential supply of ESs in absolute terms, we offer a comparative analysis of ESs' relative supply to associated management costs. In principle, the efficiency of Landscape Units (LUs) is defined as the ratio of the potential supply of multiple ESs to the costs associated with land use and land cover management. The resultant efficiency maps serve as hot and cold spot maps, revealing efficient ecosystem compositions that yield multiple ESs. This composition reflects management efforts, incorporating various management costs. Forests emerge as pivotal ecosystems in landscapes, delivering the most ESs at the lowest costs. These efficiency maps offer valuable insights for regional planners, enabling them to enhance the supply of ES in inefficient LUs by studying the ecosystem structure and associated costs of the most efficient LUs.

5.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230021, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38583478

RESUMEN

Today's biodiversity crisis fundamentally threatens the habitability of the planet, thus ranking among the primary human challenges of our time. Much emphasis is currently placed on the loss of biodiversity in the Anthropocene, yet these debates often portray biodiversity as a purely natural phenomenon without much consideration of its human dimensions and frequently lack long-term vistas. This paper offers a deep-time perspective on the key role of the evolving human niche in ecosystem functioning and biodiversity dynamics. We summarize research on past hunter-gatherer ecosystem contributions and argue that human-environment feedback systems with important biodiversity consequences are probably a recurrent feature of the Late Pleistocene, perhaps with even deeper roots. We update current understandings of the human niche in this light and suggest that the formation of palaeo-synanthropic niches in other animals proffers a powerful model system to investigate recursive interactions of foragers and ecosystems. Archaeology holds important knowledge here and shows that ecosystem contributions vary greatly in relation to different human lifeways, some of which are lost today. We therefore recommend paying more attention to the intricate relationship between biodiversity and cultural diversity, contending that promotion of the former depends on fostering the latter. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Humanos , Arqueología
6.
Sci Total Environ ; : 172552, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38643878

RESUMEN

Green infrastructure plays an essential role in cities due to the ecosystem services it provides. However, these elements are shaped by social and ecological factors that influence its distribution and diversity, which in turn affects ecological functions and human wellbeing. Here, we analyzed neighborhood tree distribution - trees in pocket parks, squares and along streets - in Lisbon (Portugal) and modelled tree abundance and taxonomic and functional diversity, at the parish and local scales, considering a comprehensive list of social and ecological factors. For the functional analyses, we included functional traits linked to dispersal, resilience to important perturbations in coastal Mediterranean cities, and ecosystem services delivery. Our results show not only that trees are unevenly distributed across the city, but that there is a strong influence of social factors on all biological indices considered. Both at the parish and local scales, abundance and diversity responded to different factors, with abundance being linked to both social and ecological variables. Although the influence of social factors on urban trees can be expected, by modelling their influence we can quantify how much humans modify urban landscapes at a structural and functional level. These associations can underlie potential biodiversity filters and should be analyzed over time to inform decisions that guarantee long-term ecological resilience, maximized trait functional expression, and equity in ecosystem services delivery.

7.
Huan Jing Ke Xue ; 45(5): 2780-2792, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629541

RESUMEN

Understanding the strength of trade-off and synergistic relationships among ecosystem services (ESs) is crucial for ecological management and restoration in the Fenhe River Basin. However, there is still a lack of sufficient research on the driving variables and spatial pattern optimization of the strength of ESs relationships in this area. Based on the quantitative assessment of six ESs in the Fenhe River Basin in 2000 and 2020, the ecosystem services trade-off synergy index (TSI) was introduced to quantitatively measure the strength of trade-off and synergistic relationships between each pair of ESs. A Bayesian network was constructed to identify the driving variables of trade-off and synergistic relationships, and sensitivity analysis was conducted to determine the degree of influence of key variables on the strength of these relationships. The optimization area of the strength of ESs trade-off and synergistic relationships was characterized in spatial patterns. The results showed that:① There were significant spatiotemporal differences in the six ESs in the Fenhe River Basin in 2000 and 2020. In terms of time scale, water yield, net primary productivity, crop productivity, soil conservation, and carbon storage all showed a trend of fluctuating increase. In terms of spatial scale, the spatial distribution changes in the six ESs were relatively small over the 20 years. ② The TSI of carbon storage was high in the surrounding area and low in the middle, showing a four-high and four-low pattern. The areas with the highest TSI between grain supply and other services were distributed from north to south. ③ Sensitivity analysis found that the strength of water yield, soil conservation, and habitat quality were significantly affected by precipitation, plant root depth restriction, and rainfall erosion. According to the conditional probability of different states of key variables, Wenshui County, Qingxu County, and Qi County in the central part of the Fenhe River Basin were identified as high-value areas for trade-off and synergistic relationships, which could be used as key areas for ecological restoration. These findings have important theoretical and practical significance for understanding the complex relationship between multiple ESs trade-off and synergistic relationships and their driving variables and for proposing sustainable ecological environment management policies.

8.
Sci Total Environ ; 926: 172127, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38569965

RESUMEN

River avulsions drive important changes in the Pantanal wetlands, owing to their role in the hydro-sedimentology of the region. Although relevant to numerous ecosystem services, few studies have analyzed the influence of river avulsions on soil fertility in the Pantanal. Here, we use the largest ongoing avulsion in the Taquari River (Caronal region) to evaluate the effects on soil fertility, considering two factors: avulsion stage (1) and aquatic-terrestrial succession (2). Since both factors are influenced by macrophyte abundance, an incident map was created through tasseled cap indices from Sentinel 2 images to guide sampling efforts in flooded soils. The mapped area was split into two zones of alluvial processes, the first from the apex of the Caronal lobe corresponding to the Taquari River megafan (TRM), and the second as the distal Paraguay River floodplain (PRF). Soil macro- and micronutrient levels were evaluated from 42 surface samples (0-0.2 m) distributed across the two alluvial process zones. The macrophyte map's overall accuracy (OA) was analyzed by a confusion matrix using the Sentinel 2 imagery. Finally, we used Random Forest regressions to determine the influence of response variables on soil attributes, including tassel indices, distance from the Caronal crevasse, macrophyte density, and an existing soil fertility map. The macrophyte map obtained an OA of 93 %. Some parameters such as pH (r = -0.62; R2 = 0.57), effective cation exchange capacity (r = -0.49; R2 = 0.79), Mn (r = -0.71; R2 = 0.6), Zn (r = -0.69; R2 = 0.54), and base saturation (r = -0.7; R2 = 0.93) were influenced by the distance or level of maturation of the avulsion stage in the TRM. Our scattering of soil collections was insufficient to test the terrestrialization hypothesis (2). The study results show that river channel avulsions influence the accumulation of mineral and organic nutrients in tropical floodplain soils, which has implications for fertility and biodiversity.

9.
Plant J ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581375

RESUMEN

Food security is threatened by climate change, with heat and drought being the main stresses affecting crop physiology and ecosystem services, such as plant-pollinator interactions. We hypothesize that tracking and ranking pollinators' preferences for flowers under environmental pressure could be used as a marker of plant quality for agricultural breeding to increase crop stress tolerance. Despite increasing relevance of flowers as the most stress sensitive organs, phenotyping platforms aim at identifying traits of resilience by assessing the plant physiological status through remote sensing-assisted vegetative indexes, but find strong bottlenecks in quantifying flower traits and in accurate genotype-to-phenotype prediction. However, as the transport of photoassimilates from leaves (sources) to flowers (sinks) is reduced in low-resilient plants, flowers are better indicators than leaves of plant well-being. Indeed, the chemical composition and amount of pollen and nectar that flowers produce, which ultimately serve as food resources for pollinators, change in response to environmental cues. Therefore, pollinators' preferences could be used as a measure of functional source-to-sink relationships for breeding decisions. To achieve this challenging goal, we propose to develop a pollinator-assisted phenotyping and selection platform for automated quantification of Genotype × Environment × Pollinator interactions through an insect geo-positioning system. Pollinator-assisted selection can be validated by metabolic, transcriptomic, and ionomic traits, and mapping of candidate genes, linking floral and leaf traits, pollinator preferences, plant resilience, and crop productivity. This radical new approach can change the current paradigm of plant phenotyping and find new paths for crop redomestication and breeding assisted by ecological decisions.

10.
Ecol Lett ; 27(4): e14411, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38577993

RESUMEN

Intensified agriculture, a driver of biodiversity loss, can diminish ecosystem functions and their stability. Biodiversity can increase functional redundancy and is expected to stabilize ecosystem functions. Few studies, however, have explored how agricultural intensity affects functional redundancy and its link with ecosystem function stability. Here, within a continental-wide study, we assess how functional redundancy of seed predation is affected by agricultural intensity and landscape simplification. By combining carabid abundances with molecular gut content data, functional redundancy of seed predation was quantified for 65 weed genera across 60 fields in four European countries. Across weed genera, functional redundancy was reduced with high field management intensity and simplified crop rotations. Moreover, functional redundancy increased the spatial stability of weed seed predation at the field scale. We found that ecosystem functions are vulnerable to disturbances in intensively managed agroecosystems, providing empirical evidence of the importance of biodiversity for stable ecosystem functions across space.


Asunto(s)
Ecosistema , Conducta Predatoria , Animales , Biodiversidad , Semillas , Agricultura
11.
Plants (Basel) ; 13(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38611560

RESUMEN

This study identified the most common poisonous and allergenic plants occurring in Sicilian gardens and parks. Based on a survey conducted at 100 sites, a list was drawn up that reports the main biological and toxicological characteristics and ornamental uses of these plants. A total of 137 taxa were recorded, of which 108 were poisonous and 32 were allergenic. The most represented families were the Solanaceae, Moraceae, Apocynaceae and Fabaceae. The most represented geographical contingents were the European and the Mediterranean. A large number of toxic and allergenic plants recorded in Sicilian parks and gardens cause gastrointestinal disorders, 21 of which are deadly poisonous. Based on the results, actions for the management of existing gardens and the construction of new ones are discussed. The importance of environmental education for the population starting from school age is stressed. These recommendations aim to preserve cultivated biodiversity and, at the same time, protect human and pet health.

12.
Animals (Basel) ; 14(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612248

RESUMEN

The growing demand for animal protein, the efficient use of land and water, and the limitations of non-renewable energy sources highlight the global importance of edible insects. This paper provides an overview of the key issues regarding the role of edible insects in sustainable feed production and environmentally friendly agriculture. The indispensable ecological services provided by insects are discussed, as well as the farming, products, and nutritional value of edible insects. A representative selection of the literature reviewing major insect species' chemical compositions and nutritional value is also presented. The use of insect-derived feeds for animal production is presented in detail and discussed for the major terrestrial livestock and aquaculture groups.

13.
Front Ecol Evol ; 12: 1-15, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38628570

RESUMEN

Framing ecological restoration and monitoring goals from a human benefits perspective (i.e., ecosystem services) can help inform restoration planners, surrounding communities, and relevant stakeholders about the direct benefits they may obtain from a specific restoration project. We used a case study of tidal wetland restoration in the Tillamook River watershed in Oregon, USA, to demonstrate how to identify and integrate community stakeholders/beneficiaries and the environmental attributes they use to inform the design of and enhance environmental benefits from ecological restoration. Using the U.S. Environmental Protection Agency's Final Ecosystem Goods and Services (FEGS) Scoping Tool, we quantify the types of ecosystem services of greatest common value to stakeholders/beneficiaries that lead to desired benefits that contribute to their well-being in the context of planned uses that can be incorporated into the restoration project. This case study identified priority stakeholders, beneficiaries, and environmental attributes of interest to inform restoration goal selection. This novel decision context application of the FEGS Scoping Tool also included an effort focused on how to communicate the connections between stakeholders, and the environmental attributes of greatest interest to them using heat maps.

14.
Sci Total Environ ; 927: 172249, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38593881

RESUMEN

Ecological management zones (EMZs) are pivotal in improving the management of ecosystem services (ESs) and promoting sustainable regional development. In this study, we developed a comprehensive framework aimed at identifying EMZs and substantiating their efficacy through the amalgamation of historical evolutionary patterns and future trends. We applied this framework to Beijing, China, and selected five vital ESs for the study area namely, water yield (WY), carbon sequestration (CS), habitat quality (HQ), soil conservation (SC) and water purification (WP). The framework involves two key components. Firstly, the identification of EMZs is based on the historical evolution of five types of ESs and the dynamic assessment of ES bundles. Subsequently, it enables a simulation of various scenarios to predict future alterations in land use and ESs, thereby validating the effectiveness of the identified EMZs. Our findings reveal notable spatial heterogeneity among different ESs, and that CS, HQ, SC, and WP exhibited synergies, while WY and showed trade-offs with the remaining four types of ESs. Based on an analysis of ES bundle evolution trajectories, we identified four types of EMZs: ecological conservation zone, ecological restoration zone, ecological transition zone and sustainable construction zone. Through strategic EMZ planning, it becomes possible to augment the area of forestland and grassland, alleviate the contradiction between arable land and construction land, and enhance the supply of various ESs. The proposed framework not only offers a novel perspective on the scientific management of ESs but also furnishes decision-makers and planners with an intuitive understanding of the tangible benefits associated with EMZ planning.

15.
Glob Chang Biol ; 30(4): e17292, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634556

RESUMEN

Drylands, comprising semi-arid, arid, and hyperarid regions, cover approximately 41% of the Earth's land surface and have expanded considerably in recent decades. Even under more optimistic scenarios, such as limiting global temperature rise to 1.5°C by 2100, semi-arid lands may increase by up to 38%. This study provides an overview of the state-of-the-art regarding changing aridity in arid regions, with a specific focus on its effects on the accumulation and availability of carbon (C), nitrogen (N), and phosphorus (P) in plant-soil systems. Additionally, we summarized the impacts of rising aridity on biodiversity, service provisioning, and feedback effects on climate change across scales. The expansion of arid ecosystems is linked to a decline in C and nutrient stocks, plant community biomass and diversity, thereby diminishing the capacity for recovery and maintaining adequate water-use efficiency by plants and microbes. Prolonged drought led to a -3.3% reduction in soil organic carbon (SOC) content (based on 148 drought-manipulation studies), a -8.7% decrease in plant litter input, a -13.0% decline in absolute litter decomposition, and a -5.7% decrease in litter decomposition rate. Moreover, a substantial positive feedback loop with global warming exists, primarily due to increased albedo. The loss of critical ecosystem services, including food production capacity and water resources, poses a severe challenge to the inhabitants of these regions. Increased aridity reduces SOC, nutrient, and water content. Aridity expansion and intensification exacerbate socio-economic disparities between economically rich and least developed countries, with significant opportunities for improvement through substantial investments in infrastructure and technology. By 2100, half the world's landmass may become dryland, characterized by severe conditions marked by limited C, N, and P resources, water scarcity, and substantial loss of native species biodiversity. These conditions pose formidable challenges for maintaining essential services, impacting human well-being and raising complex global and regional socio-political challenges.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Carbono , Suelo/química , Temperatura , Plantas , Agua
16.
J Environ Manage ; 358: 120899, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38636421

RESUMEN

Floodplains provide an extraordinary quantity and quality of ecosystem services (ES) but are among the most threatened ecosystems worldwide. The uses and transformations of floodplains differ widely within and between regions. In recent decades, the diverse pressures and requirements for flood protection, drinking water resource protection, biodiversity, and adaptation to climate change have shown that multi-functional floodplain management is necessary. Such an integrative approach has been hampered by the various interests of different sectors of society, as represented by multiple stakeholders and legal principles. We present an innovative framework for integrated floodplain management building up on ES multi-functionality and stakeholder involvement, forming a scientifically based decision-support to prioritize adaptive management measures responding at the basin and local scales. To demonstrate its potential and limitations, we applied this cross-scaled approach in the world's most international and culturally diverse basin, the Danube River Basin in Europe. We conducted large-scale evaluations of anthropogenic pressures and ES capacities on the one hand and participatory modelling of the local socio-ecohydrological systems on the other hand. Based on our assessments of 14 ES and 8 pressures, we recommend conservation measures along the lower and middle Danube, restoration measures along the upper-middle Danube and Sava, and mitigation measures in wide parts of the Yantra, Tisza and upper Danube rivers. In three case study areas across the basin, stakeholder perceptions were generally in line with the large-scale evaluations on ES and pressures. The positive outcomes of jointly modelled local measures and large-scale synergistic ES relationships suggest that multi-functionality can be enhanced across scales. Trade-offs were mainly present with terrestrial provisioning ES at the basin scale and locally with recreational activities. Utilizing the commonalities between top-down prioritizations and bottom-up participatory approaches and learning from their discrepancies could make ecosystem-based management more effective and inclusive.

17.
Plants (Basel) ; 13(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38592938

RESUMEN

The response of coastal wetlands to sea-level rise (SLR) largely depends on the tolerance of individual plant species to inundation stress and, in brackish and freshwater wetlands, exposure to higher salinities. Phragmites australis is a cosmopolitan wetland reed that grows in saline to freshwater marshes. P. australis has many genetically distinct haplotypes, some of which are invasive and the focus of considerable research and management. However, the relative response of P. australis haplotypes to SLR is not well known, despite the importance of predicting future distribution changes and understanding its role in marsh response and resilience to SLR. Here, we use a marsh organ experiment to test how factors associated with sea level rise-inundation and seawater exposure-affect the porewater chemistry and growth response of three P. australis haplotypes along the northern Gulf of Mexico coast. We planted three P. australis lineages (Delta, European, and Gulf) into marsh organs at five different elevations in channels at two locations, representing a low (Mississippi River Birdsfoot delta; 0-13 ppt) and high exposure to salinity (Mermentau basin; 6-18 ppt) for two growing seasons. Haplotypes responded differently to flooding and site conditions; the Delta haplotype was more resilient to high salinity, while the Gulf type was less susceptible to flood stress in the freshwater site. Survivorship across haplotypes after two growing seasons was 42% lower at the brackish site than at the freshwater site, associated with high salinity and sulfide concentrations. Flooding greater than 19% of the time led to lower survival across both sites linked to high concentrations of acetic acid in the porewater. Increased flood duration was negatively correlated with live aboveground biomass in the high-salinity site (χ2 = 10.37, p = 0.001), while no such relationship was detected in the low-salinity site, indicating that flood tolerance is greater under freshwater conditions. These results show that the vulnerability of all haplotypes of P. australis to rising sea levels depends on exposure to saline water and that a combination of flooding and salinity may help control invasive haplotypes.

18.
Environ Res ; 252(Pt 2): 118837, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570129

RESUMEN

This detailed analysis highlights the numerous environmental benefits provided by urban green spaces, emphasizing their critical role in improving urban life quality and advancing sustainable development. The review delves into critical themes such as the impact of urban green spaces on human health, the complex interplay between urban ecology and sustainability, and the evaluation of ecosystem services using a comprehensive review of existing literature. The investigation thoroughly examines various aspects of green infrastructure, shedding light on its contributions to social cohesion, human well-being, and environmental sustainability in general. The analysis summarizes the study's findings and demonstrates the critical role of urban green spaces in urban ecology, which significantly mitigates environmental challenges. The intricate links between these green spaces and human health are thoroughly investigated, with benefits ranging from enhanced mental and physical well-being to comprehensive mental health. Furthermore, the analysis emphasizes how green spaces benefit urban development by increasing property values, boosting tourism, and creating job opportunities. The discussion also considers possible futures, emphasizing the integration of technology, the advancement of natural solutions, and the critical importance of prioritizing health and well-being in the design of urban green spaces. To ensure that urban green spaces are developed and maintained as essential components of resilient and sustainable urban environments, the assessment concludes with practical recommendations for communities, urban planners, and legislators.

19.
Philos Trans R Soc Lond B Biol Sci ; 379(1903): 20220327, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38643789

RESUMEN

By embedding a spatially explicit ecosystem services modelling tool within a policy simulator we examine the insights that natural capital analysis can bring to the design of policies for nature recovery. Our study is illustrated through a case example of policies incentivising the establishment of new natural habitat in England. We find that a policy mirroring the current practice of offering payments per hectare of habitat creation fails to break even, delivering less value in improved flows of ecosystem services than public money spent and only 26% of that which is theoretically achievable. Using optimization methods, we discover that progressively more efficient outcomes are delivered by policies that optimally price activities (34%), quantities of environmental change (55%) and ecosystem service value flows (81%). Further, we show that additionally attaining targets for unmonetized ecosystem services (in our case, biodiversity) demands trade-offs in delivery of monetized services. For some policy instruments it is not even possible to achieve the targets. Finally, we establish that extending policy instruments to offer payments for unmonetized services delivers target-achieving and value-maximizing policy designs. Our findings reveal that policy design is of first-order importance in determining the efficiency and efficacy of programmes pursuing nature recovery. This article is part of the theme issue 'Bringing nature into decision-making'.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/economía , Inglaterra , Biodiversidad , Política Ambiental/legislación & jurisprudencia
20.
Sci Rep ; 14(1): 9394, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658624

RESUMEN

Tramways in urban areas for mass transit has been suggested to have a lower environmental footprint than roads. However, studies on the impact of tramways and the surrounding infrastructure on biodiversity is extremely rare despite the potential ecological effects associated with this anthropogenic feature. Surprisingly, we found fewer than 10 papers published on tramway-wildlife interactions, which is significantly lower (vs dozens of thousands) than that of other transportation methods. As tramways and stations may be managed sustainably by planting short vegetation on the track and roofs of tramway stations, they may be good examples of land-sharing policies in green urban planning, improving both biodiversity and people's well-being. The potential environmental benefits of green practices for commercially available tramways should be strictly tested and applied, especially in the context of the growing popularity of tramway systems worldwide.


Asunto(s)
Biodiversidad , Ecosistema , Conservación de los Recursos Naturales/métodos , Humanos , Vías Férreas , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...